

Results of the simulation runs

Claus Huber, Thomas Faber, Gustav Resch Energy Economics Group (EEG)

Overview

Introduction

- Method of approach
- The toolbox Green-X
- General assumptions
- Investigated scenarios
- Results

Introduction

- Will be currently developed within the EU-project "Deriving optimal promotion strategies for increasing the share of RES-E in a dynamic European electricity market - Green-X"
- Objective of *Green-X*:
 - To facilitate a significant increased RES-E generation in a liberalised electricity market with minimal costs to European citizen.
 - To find a set of efficient, sustainable and integrated strategies for RES-E, conventional electricity production (incl. CHP), DSM activities and GHG-reduction
- Independent software tool under Microsoft Windows

Green-X

The toolbox Green-X

Results Costs and Benefits on a yearly basis (2000-2020)

Results computer model Green-X

- The following results can be derived on country and technology level on a yearly basis till 2020:
 - Total electricity generation (RES-E and conventional)
 - Electricity production by each technology
 - CO₂-emissions
 - Average costs of electricity generation on technology level
 - Import / export balances RES-E and conventional power
 - Influence of energy policy setting on
 - total generation costs and benefits for investors / utilities
 - costs and benefit for consumer / society

General scenario assumptions (1/7)

Electricity demand according to DG TREN Outlook 2030: European Energy and Transport Trends to 2030 Outlook (Mantzos et. al 2003) – Baseline forecast

Green-X

General scenario assumptions (2/7)

Primary energy prices –fossil energy

WETO: World Energy, Techonology and Climate Policy Outlook by ENERDATA et al. on behalf of DG Research (2003)

DG TREN Outlook 2030: European Energy and Transport Trends to 2030 by Mantzos et al. (2003)

US-DOE: International Energy Outlook 2002, Reference Case projection

IEA: World Energy Outlook to 2020 (2002)

Enquete: Analysis grid for the German Enquete Commission on Sustainable Energy Policy (2002)

General scenario assumptions (3/7)

• Primary energy prices bioenergy: country-specific prices

General scenario assumptions (4/7)

• Weighted average costs of capital (WACC)

 $WACC = gd \cdot rd + ge \cdot re = gd \cdot [rfd + rpd] + ge \cdot [rfe + b \cdot rpe] \cdot (1 + rt)$

	Abbreviation / calculation	Default risk assessment		Higher risk assessment	
		Dept (d)	Equity (e)	Dept (d)	Equity (e)
Share equity / debt	g	75.0%	25.0%	70.0%	30.0%
Nominal risk free rate	r _n	4.1%	4.1%	4.1%	4.1%
Inflation rate	i	1.9%	1.9%	1.9%	1.9%
Real risk free rate	$r_f = r_n - i$	2.2%	2.2%	2.2%	2.2%
Expected market rate of return	r _m	4.7%	7.5%	4.7%	10.7%
Risk premium	$r_p = r_m - r_f$	2.5%	5.3%	2.5%	8.5%
Equity beta	β		1.59		1.59
Tax rate (corporation tax)	r _t		12.5%		12.5%
Post-tax cost	r _{pt}	4.7%	10.6%	4.7%	15.7%
Real cost	$r = r_{\rho t} * (1 + r_t)$	4.7%	12.0%	4.7%	17.7%
Weighted average cost of capital	WACC	6.5%		8.6%	

General scenario assumptions (5/7)

Future cost projections – technological learning

E.g. Results from BAU scenario

General scenario assumptions (6/7)

For all investigated it has been assumed:

- Stable planning horizon, i.e. investors have knowledge about applied policy mechanism in the future
- Continuous RES-E policy / long term RES-E targets
- Clear and well predefined tariff structure / yearly quota
- Reduced investment costs over time (technological learning)
- Reduction in barriers and high public acceptance in the long term (depending on the target)

General scenario assumptions (7/7)

- For all investigated with the exception of BAU, it has been assumed:
- New support mechanism refer to new capacity only; This means already supported RES-E technology remains in their support instrument
- For new support mechanism: Restriction of the duration in which investors can receive the (additional) financial support

Investigated cases (1/3)

National Support Schemes and EU Community Framework

Taking account of the wide diversity of promotion schemes between Member States, the Directive states that it is too early to set a Community-wide framework regarding support schemes. By 10/27/2005, the Commission should present a report on the experience gained with the application and coexistence of different support schemes in the Member States. The report may be accompanied by a proposal for a Community framework for RES support schemes (art.4.2). However, the directive also stipulates that such a proposal for a harmonised support framework should allow a transition period of at least 7 years (thereafter) in order to maintain investors' confidence and avoid stranded costs.

Investigated cases (2/3)

RES-E deployment over time EU-15

Total RES-E generation EU-15 in 2020

Green-X

Green-X

New RES-E installations up to 2020 BAU

Investment needs up to 2020 BAU

Green-X

Investment needs up to 2020 "1000 TWh"

Green-X

Transfer costs for society (BAU)

Transfer costs for society ("1000TWh")

Transfer costs for society – Comparison all cases

Transfer costs for society – Comparison all cases

