

Dynamics of cost-resource curves for RES-E

Gustav Resch, Claus Huber, Thomas Faber, Reinhard Haas, Energy Economics Group (EEG)

Content

1. Introduction

Modelling aspects

2. Basic principles

- Static cost-resource curves
- Experience curves
- Dynamic cost-resource curves

3. Overview: RES-E in EU-15 countries

- Achieved vs. additional realisable potentials
- Costs of electricity
- Cost-resource curves

4. Comparison

- Potentials vs. future targets
- Concluding remark

1. Introduction: The computer model Green-X

- has been developed within the EU-project "Deriving optimal promotion strategies for increasing the share of RES-E in a dynamic European electricity market - Green-X" funded by the EC DG RESEARCH
- Objective of *Green-X*:
 - To facilitate a significant increased RES-E generation in a liberalised electricity market with minimal costs to European citizen.
 - To find a set of efficient, sustainable and integrated strategies for RES-E, conventional electricity production (incl. CHP), DSM activities and GHG-reduction

1. Introduction: The computer model Green-X

- Within Green-X the most important energy policy instruments can be simulated and their effects analysed in a dynamic framework:
 - RES-E (e.g. feed-in tariff, quota system, tendering systems)
 - Conventional technologies (e.g. nuclear phase-out)
 - Combined heat and power production (e.g. quota system)
 - Demand side activities (e.g. investment subsidies, tax relief)
 - GHG-emission strategies (certificate trade, taxes)
- All RES-E technologies in every country are described by dynamic cost-resource curves for the EU-15 member states.

1. Introduction: Forecasting RES-E deployment within Green-X

Remark: RES-E ... Renewable energy sources for electricity generation

What are the important aspects? How to implement them into a model?

Energy Policy: Promotions strategies for RES-E

→ Modelling of policy instruments (see presentation "the dynamic computer-model Green-X")

- Potentials (achieved & future potentials)
 - \rightarrow Inclusion of limitations, described by cost-resource curves
- Economics Costs of electricity for RES-E

 \rightarrow Cost assessment, e.g. done by cost-resource curves

Dynamic development (of costs & potentials)

→ Costs: "learning curve – approach" or expert forecast
→ Potentials: Dynamic restrictions

2. Basic principles: Static cost-resource curves

Combines information on the **potential** and the according **costs** (of electricity for a specific energy source).

>All costs/potentials-bands are sorted in a least cost way

>For limited resources (as RES-E) costs rise with increased utilization.

costs = f (potential); t = constant

"...every location is slightly different"

Practical approach: Sites with similar characteristics described by one band

Dissemination Workshop project Green-X September 15th 2004, Vienna

2. Basic principles:

Experience curves

>describe how costs decline with cumulative production.

Costs decline by a constant percentage with each **doubling** of the units produced or applied.

C_{CUM} Costs per unit

- Costs of the first unit
- CUM Cumulative production
- **Experience** index b
- LR Learning rate (LR=1-2^b)

2. Basic principles:

Dynamic cost-resource curves

A *dynamic cost-resource curve* represents a tool to **provide the linkage** between both approaches described before, i.e. the dynamic cost assessment as e.g. done by application of **experience curves** and the formal description of costs and potentials by means of **static cost-resource curves**.

The Green-X approach: <u>Dynamic cost-resource curves</u>

2. Basic principles:

Dynamic cost-resource curves PART 2: Dynamic assessment

>Dynamic cost assessment done by experience curves or expert forecast

Dynamic limitation of annual realisable potential...

Dynamic restricitons & their characterization		Techn specific	chn Country- Band- Linkage Impact or ecific specific specific to policy Costs		Impact on Costs	Impact on Potentials	Methodology to implement		
Industrial constraints	Growth rate of industry	X					X	EU-wide limitation of annual installations	
Technical constraints	Grid constraints (i.e. extension necessary)	x	X	X		(X)	X	Band-specific limitation of annual installations, additional costs for grid extension	
Market & administr. constraints	Market transparency	X	X				X		
	"bureaucracy"	Х	X		X	(X)	X		
Societal constraints	'Willingness to accept'	x	X	X	x		x	(Band-specific) limitation of annual realisable potential	
	[Τ]	

		3. Overview – RES-l	E in EU-15: Definitons	
RE	ES-E te	echnologies co	nsidered:	Abbreviation:
E & C	1.	Biogas		E Electricity
E&C	2.	Biomass	Forestry products, Forestry residues, Agricultural products Agricultural residues Biodegradable fraction of waste	C CHP
E & C	З.	Geothermal electr		
E	4.	Hydro power	Small scale hydro power (<10 MW) Large scale hydro power (>10 MW)	
E & C	5.	Landfill gas		
E & C	6.	Sewage gas		
E	7.	Solar	Photovoltaics Solar thermal electricity	
E	8.	Tidal (stream) ene		
E	9.	Wave energy		
E	10.	Wind	Wind on-shore Wind off-shore	

3. Overview – RES-E in EU-15 :

Existing plant – achieved potential

Example: Wind onshore in Austria

		Base(B)/	Potential	Load hours	Load hours	Efficiency	Efficiency	O+M costs		costs
Band name	Constr. year	Peak(P) load	[GWh]	ele [h/a]	heat [h/a]	ele [1]	heat [1]	[€/kWinst.] F	uel category	[€/kWinst.]
AT-E-RES-X-WI-ON-1	1993	В	0,02	1850	0	1	0	45	0	1511
AT-E-RES-X-WI-ON-2	1994	В	0,54	1850	0	1	0	45	0	1337
AT-E-RES-X-WI-ON-3	1995	В	0,88	1850	0	1	0	45	0	1299
AT-E-RES-X-WI-ON-4	1996	В	20,21	1850	0	1	0	45	0	1245
AT-E-RES-X-WI-ON-5	1997	В	14,80	1850	0	1	0	45	0	1172
AT-E-RES-X-WI-ON-6	1998	В	18,32	1850	0	1	0	45	0	1144
AT-E-RES-X-WI-ON-7	1999	В	9,99	1850	0	1	0	45	0	1076
AT-E-RES-X-WI-ON-8	2000	В	77,70	1850	0	1	0	45	0	1028
AT-E-RES-X-WI-ON-9	2001	В	32 38	1850	0	1	0	45	0	1010

3. Overview – RES-E in EU-15 : **Existing plant** – achieved potential

Overview: Achieved potential vs. Gross electricity consumption (EU-15)

3. Overview – RES-E in EU-15 : **Existing plant** – achieved potential Overview: RES-E technologies as share of total achieved potential (EU-15)

3. Overview – RES-E in EU-15 : **New plant** – additional mid-term potential Overview: Achieved (2001) and additional mid-term (2020) potential (EU-15)

3. Overview – RES-E in EU-15 : **New plant** – additional mid-term potential Overview: RES-E technologies as share of total additional potential (EU-15)

3. Overview – RES-E in EU-15 :

Costs of electricity

- Model implementation -

Band specific parameter:

(i.e. included in the database for potentials & costs!!!)

Investment costs

≻O&M costs

Fuel costs (→Biomass)

Refering to the start year of the simulation (i.e. 2002)

Strategy-/Setting-specific parameter:

(i.e. internalised into model-calculation)

➤Depreciation time

➢Interest rate

Electrcity market price (peak/base)

The following **overview on electricity generation costs** is based on default figures for **interest rate** (i.e. 6,5%) & **depreciation time** (i.e. 15 years)!!!

2. Overview – RES-E in EU-15 : Costs of electricity Overview: Long-run marginal generation costs by RES-E (for EU-15)

3. Overview – RES-E in EU-15 : Costs of electricity Overview: Short-run marginal generation costs by RES-E (for EU-15)

3. Overview – RES-E in EU-15 : COSt-resource curves Example: Wind onshore in Germany

4. Comparison : Potentials vs. targets Overview: Achieved potential vs. RES-E targets by country (for EU-15)

4. Comparison : Potentials vs. targets Overview: Mid-term potential vs. RES-E targets by country (for EU-15)

4. Comparison: Concluding remark

The **derived database on RES-E potentials & costs** – done by **dynamic cost-resource curves** – provides a comprehensive picture of the EU-wide situation & is ready to start in-depth analysis!