

The Dynamic Computer-model Green-X

Claus Huber, Thomas Faber, Gustav Resch Energy Economics Group (EEG)

Overview

Introduction

> Available versions of the simulation tool

- Overview of the computer-model Green-X (Methodology)
- Illustration of the computer-model Green-X

Introduction

- The dynamic toolbox Green-X represents the main product of the project Green-X
 - A database, allowing dynamic changes and calculating potentials and costs of RES-E, CHP and conventional power
 - A dynamic computer model Green-X integrating RES-E, CHP generation, conventional electricity production and the most relevant demand-side activities
- The computer model allows a comparative and quantitative analysis of interactions between RES-E, CHP, DSM activities and GHG-reduction within the liberalised electricity sector both for the EU as a whole and individual Member States over time by simulating different scenarios

Scenarios Output

- Advice on policy proposals at both EU and on national level e.g. to reach targets indicated by the EU RES-E Directive
- Demonstrate the consequences of a non-harmonised approach versus a harmonised RES-E policy
- Show the effects of *linked policies* for RES-E, CHP, important DSM activities and GHG-reduction versus separated and *individually adjusted strategies* for these areas, (demonstrating especially the impact on TGCs and GHG permits).
- Estimation of costs and benefits for the EU as a whole as for all 15 member states, producers and consumers.
- Recommendation for practical implementation of efficient strategies over time for each step

Available Versions

Internal Version

Aim:

- + Analysis of RES-E policy
- + Interactions of RES-E with the conventional electricity market and other policies (TEA, CHP, DSM)

Know-how:

Internal full version is an expert tool; detailed knowledge of the database and the applied methodology necessary

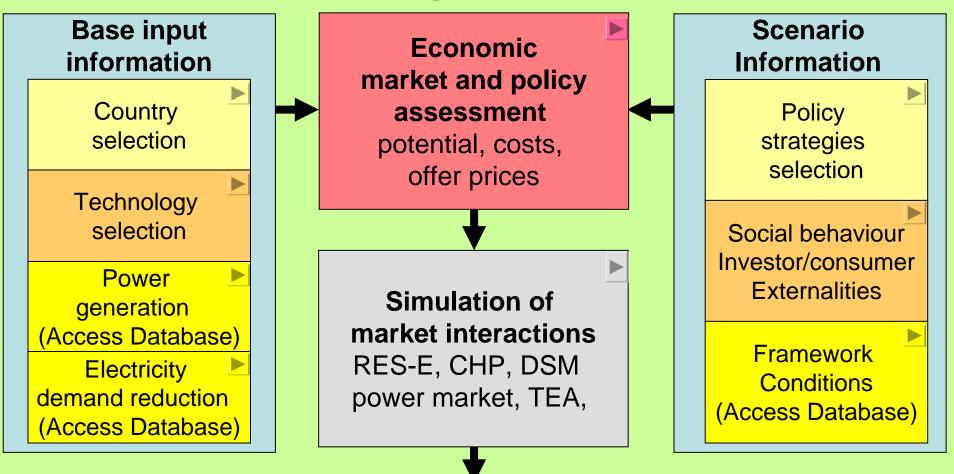
Interactive work during simulation runs necessary

Public Version (CD)

Aim:

 + Analysis of RES-E policy on country and EU-15 level (conventional power price exogenously given)

Know-how:


Public version is robust simulation tool – (rudimentary) knowledge of the RES-E system and promotion instruments necessary;

No comprehensive interactive work during simulation runs necessary, lower run-time

Green-X

Overview computer-tool Green-X

Results Costs and Benefits on a yearly basis (2000-2020)

Country Selection

Individual countries or whole group of countries

EU-15 Member States

EU 10+ Accession Countries -- extended version

EU Candidate Countries (BU, RO, TR) -- extended version

Other European countries (CH, NO) -- extended version

Technology Selection

Considered Technologies

Electricity generation

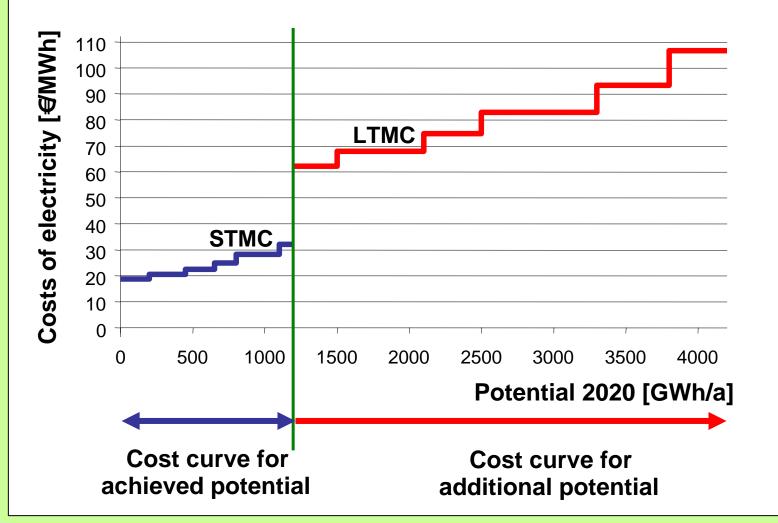
10 (17) RES-E technologies

4 (5) Thermal and nuclear power plants

Combined heat and power generation - extended version

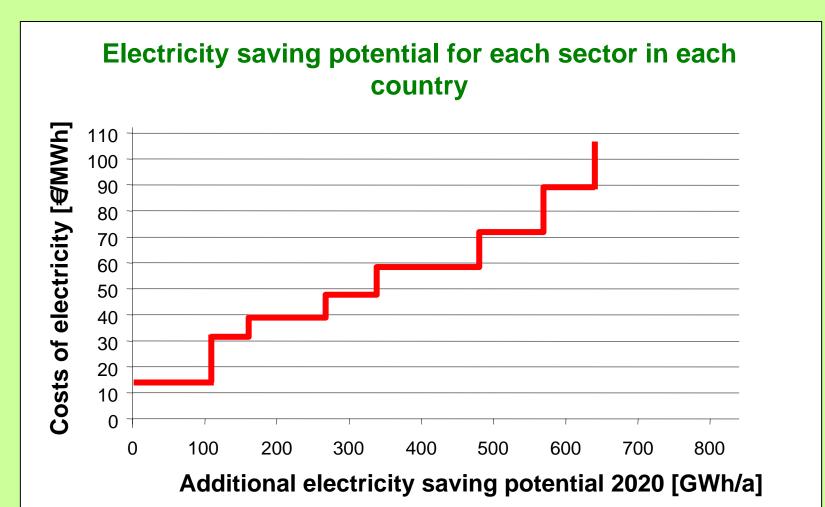
4 (8) RES-E technologies

3 (4) Thermal power plants



Power generation (Database)

Cost-resource curve for each technology in each country



Electricity demand reduction (Database)

Policy strategy selection

Considered promotion strategy
General tax
Energy tax
Environmental tax - extended version
Electricity generation
Price-driven strategies
Capacity-driven strategies
Combined heat and power
Price-driven strategies
Capacity-driven strategies
DSM instruments
Climate Policy - extended version

Social Behaviour

Individual behaviour can be selected per technology country and year

Investment decisions of investors (interest rate) - extended version

Technology

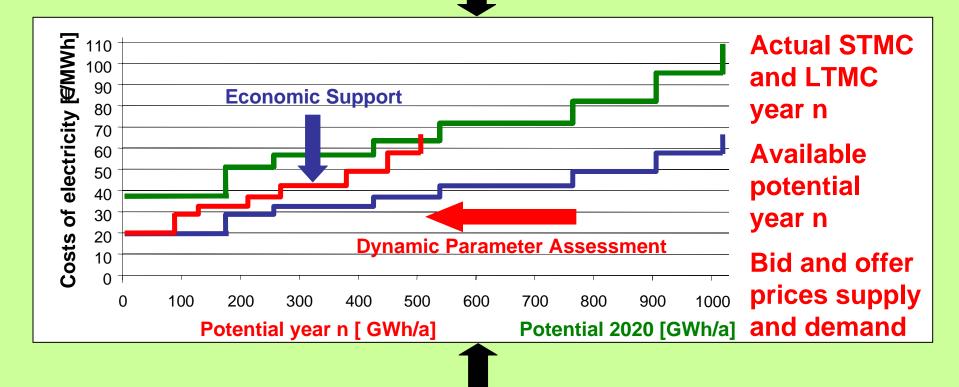
Policy instrument

Planning horizon / policy design

Strategic behaviour investors (tendering, bidding)

Framework Conditions / Database

Different Scenarios available per country and year
Demand forecast
yearly electricity demand
yearly heat from CHP
peak demand electricity
reserve capacity
Price elasticity - extended version
Availability factor of each technology (yearly volatility)
Import / export restrictions electricity trade extended version
Dynamic parameter restrictions
Technology cost forecast / learning factors
Prices
Primary energy price



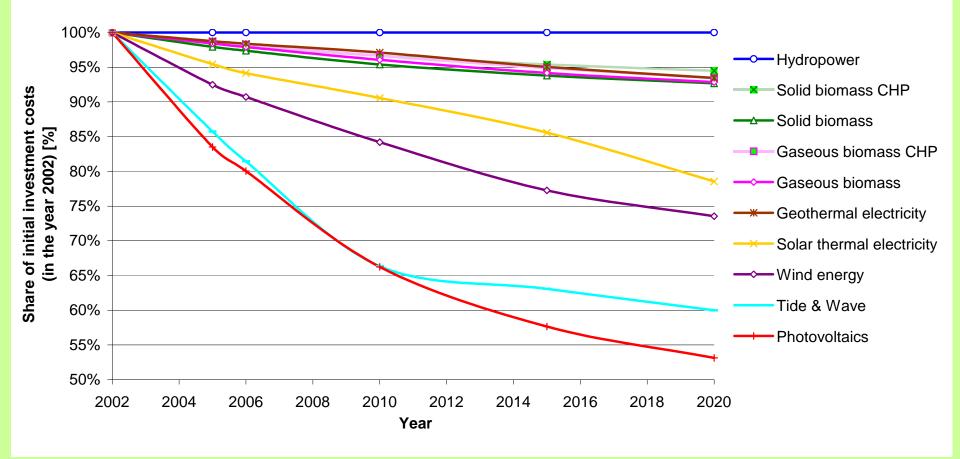
Economic market and policy assessment

Cost-resource curves

for each technology in each country

Technology / country specific support schemes

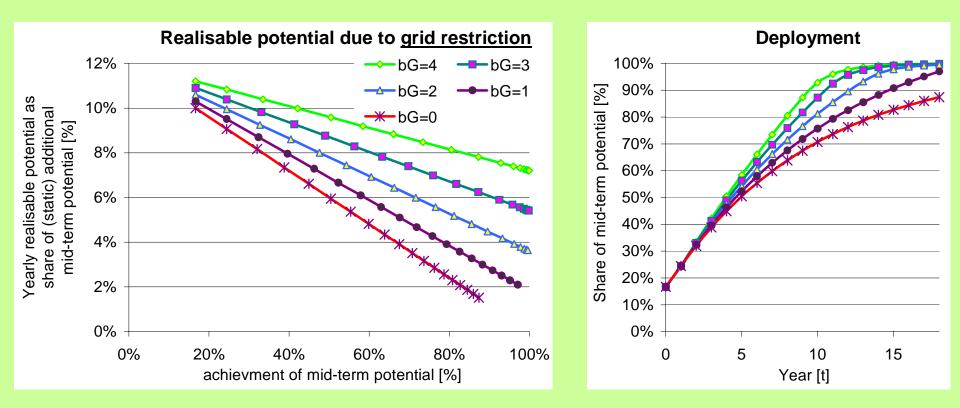
Incentives / Barriers Investor / consumer behaviour


Externalities

Dynamic aspect: Investment costs

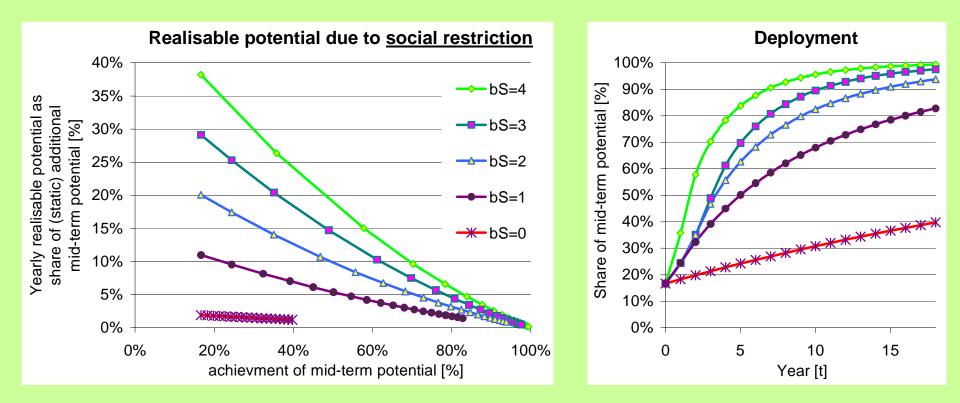
Illustration: Reduction of investment cost reduction BAUscenario due to technological learning

Dynamic aspect: Potential


- Mid-term potential is be broken down to yearly available potentials. In the model the following barriers will be considered:
 - Market barriers (e.g. no matured market)
 - Social barriers (e.g. social acceptance)
 - Industrial barriers (e.g. maximum of global growth rate of a certain technology)
 - Dynamic availability of resources (e.g. biomass, landfill gas)
- Determination of dynamic parameters is based on econometric analysis and stakeholder and expert interviews

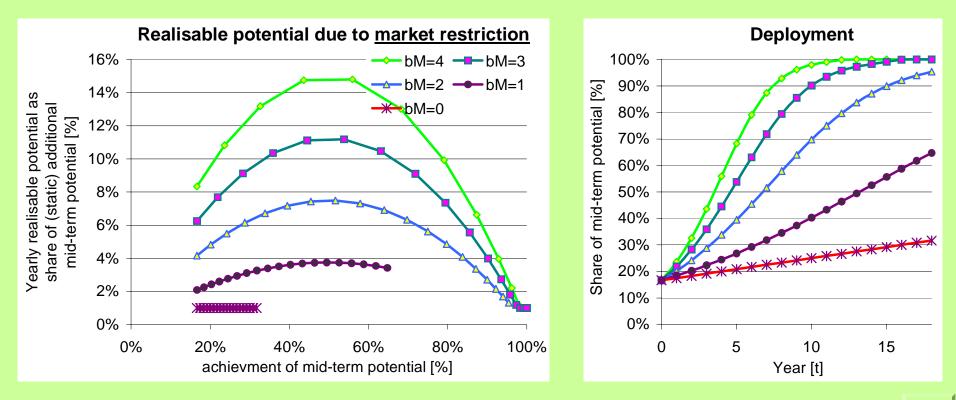
Dynamic aspect: Potential

Modelling approach for grid restriction



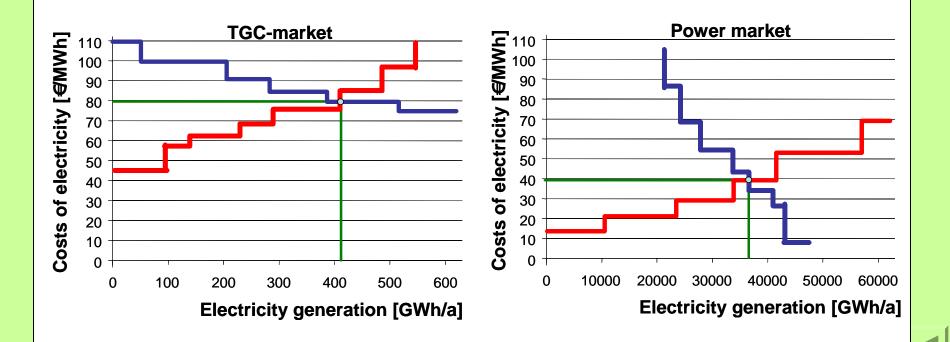
Dynamic aspect: Potential

Modelling approach for social constraints



Dynamic aspect: Potential

Modelling approach for market constraints



Simulation of market interactions

Analysis of various interactions between RES-E, power market, CHP support, GHG goals, and DSM activities

=> Possible market separations, clearing prices

Results computer model Green-X

- The following results can be derived on country and technology level on a yearly basis till 2020:
 - Total electricity generation (RES-E and conventional)
 - Electricity production by each technology
 - CO₂-emissions
 - Average costs of electricity generation on technology level
 - Import / export balances RES-E and conventional power
 - Influence of energy policy setting on
 - total generation costs and benefits for investors / utilities
 - costs and benefit for consumer / society

Expected Results (1/3)

Results per country and year
General Results
Installed capacity per technology [MW]
Total Fuel input [TJ]
Total energy generation [GWh]
Total electricity generation [GWh]
Electricity generation per technology [GWh]
National electricity consumption [GWh]
Import / export electricity balance [GWh, % of gen.] extended version
Total CO -omissions [Mt-CO] oxtended version

Total CO₂-emissions [Mt-CO₂] -- extended version

Expected Results (2/3)

Results per country and year
Impact Producer
Total generation costs [M€, €/MWh]
Gen. costs electricity generation [M€, €/MWh]
Gen. costs electricity per techn. [M€, €/MWh]
Total producer surplus (PS) [M€, €/MWh]
PS electricity generation [M€, €/MWh]
PS electricity per techn. [M€, €/MWh]
Marginal generation costs per technology electricity gen. [∉MWh]

Expected Results (3/3)

Results per country and year
Impact Consumer
Additional costs due to RES-E strategy [M€, €MWh]
Additional costs due to CHP strategy [M€, €MWh]
Additional costs due to DSM strategy [M€, €/MWh]
Additional costs due to CO ₂ -strategy total [M€, €MWh, €t-CO ₂] - extended version
Prices
Market price electricity [€/MWh] extended version
Market price Tradable Green Certificates [€/MWh]

Market price Tradable Emission Allowances [€t-CO₂] -- extended version

System requirements Green-X

- Intel Pentium IV or AMD Processor with 2500 MHz frequency or more, respectively Centrino Mobile Processor with 1700 MHz frequency
- Minimum of 512 Mbyte RAM
- Minimum Screen Resolution 1024x768 (optimised for 1280x1024)
- ➢ 16 Bit Colours
- Operating system: Windows 2000, Windows XP

Illustration of the computer-model Green-X

Contact Details

Project co-ordination:

Prof. Dr. Reinhard Haas Project co-ordinator

Energy Economics Group (EEG) Institute of Power Systems and Energy Economics, Vienna University of Technology Gusshausstrasse 25-29 A-1040 Vienna Austria email: <u>Haas@eeg.tuwien.ac.at</u> phone: ++43-(0)1-58801-37352 fax: ++43-(0)1-58801-37397

Dr. Claus Huber Scientific co-ordinator Energy Economics Group (EEG) Institute of Power Systems and Energy Economics, Vienna University of Technology Gusshausstrasse 25-29 A-1040 Vienna Austria email: <u>Huber@eeg.tuwien.ac.at</u> phone: ++43-(0)1-58801-37360 fax: ++43-(0)1-58801-37397

Project web-site:

www.green-x.at